

Spray Nozzle Selection for CLS Control...

When it comes to Cercospora fungicide applications, everyone has heard the 'Three R's cliché' - that disease control comes from using the <u>RIGHT product at the RIGHT rate at the RIGHT time</u>. This statement has consistently held true through the years and has proven itself time and time again. Keep in mind that by following the 2019 MDFC Fungicide program, you will hit all three of these key areas of CLS control. Based upon the most current research and with resistance management in mind, we are recommending that specific fungicides be tank-mixed and applied together (RIGHT product) at full-labeled rates (RIGHT rate) on 10-12 day intervals (RIGHT time). I would argue that the amendment of a 'Fourth R' could be added to help make the original three even more effective, and that's to apply the spray solution in the <u>RIGHT manner</u>.

One of the most important (and often overlooked) components of making sure the spray solution is applied in the RIGHT manner is the spray nozzles. Nozzles are typically the least expensive items on a sprayer but play a key role in the final outcome of a fungicide application. It is important to remember that once the spray solution leaves the nozzle, you no longer have control of the spray droplet from that point on. Even if you have done everything 'upstream' of the nozzle to textbook standards, if the solution leaves the sprayer through the wrong nozzle (or the right nozzle used incorrectly), CLS control will be compromised.

So Which Nozzle Should I Use?

When it comes to CLS applications, the most important part of selecting the spray nozzle is the droplet size that it will produce. You want to be using nozzles that will produce medium-fine to fine droplet size. This is in the range of 145 to 325 microns (for reference the diameter of a human hair is roughly 100 microns and a toothbrush bristle 300 microns). Calculated with both the protectant and systemic-type products we are using, this range ensures that the spray droplets are not too small - decreasing canopy penetration and increasing the potential for the droplet to move off target and/or evaporate too quickly. The range also safeguards from droplets being too large, which have the tendency to bounce and/or run off the beet leaf. The illustration to the right was developed by Purdue Extension and summarizes the advantages/disadvantages of each micron range, as well as the effect of droplet size in relation to individual leaf coverage.

Where Do I Find The Droplet Size Each Type of Nozzle Produces?

Most all of the spray catalogs have tables for each nozzle, similar to the one shown to the right. Using the most recent TeeJet catalog, note that the table for XR Flat Fans indicates the spray droplet size (fine, medium, coarse, etc.) produced at different pressure settings under the 'Drop Size' heading (red box).

Is There A Specific Brand Of Nozzle I Should Be Using?

Nope – Just like many of you prefer to drive a Chevy pickup over a Ford (or vise-versa), all of the major nozzle brands have products that will produce a droplet size in the recommended micron range for Cercospora Leaf Spot applications.

How About Nozzle Tip Material?

The nozzles that you will find at an ag retailer will likely be made of either brass, plastic, stainless steel or ceramic. As a rule of thumb, brass is the least durable nozzle material and will wear faster than the other materials. In comparison, plastic nozzle tips last two to four times longer, stainless steel four to six times longer and ceramic 20 to 50 times longer than brass. However, research conducted at the University of Nebraska has shown that the most accurate and consistent spray patterns come from brass and stainless steel nozzle tips. This is because these tips are machined as opposed to being cast (like plastic and ceramic tips). Although the differences are minute, after any casted material cools it shrinks, altering the spray pattern slightly.

	6	5	DRO		a	NUTY	tha 50 cm											
90	-	÷		100	1	ZZ1.E /min	4 kmh	S km/h	6 km/h	7 km/h	il km/h	10 km/h	12 km/h	16 km/h	18 km/h	20 km/h	25 km/h	30 km/h
		0	1	12		23	69.0	55.2	46.0	39.4	34.5	27.6	23.0	17.3	15.3	13.8	11.0	9.2
X88001		5	1	12	н	28	96.0	67.2	56.0	48.0	42.0	33.6	28.0	21.0	21.3	16.8	11.4	11.2
XR11001		5	÷.	Ŀ.		36	108	86.4	72.0	61.7	54.0	43.2	36.0	27.0	24.D	21.6	17.3	14.4
(100)		0	12	Ľ	H	39	117	93.6	78.0	66.9	58.5	46.8	39D	29.3	26.0	23.4	18.7	15.6
		0	M	T	Н	34	102	81.6	68.0	58.3	51.0	40.8	34.0	25.5	22.7	20.4	16.3	13.6
XR80015		5	12	12	н	42	126	101	84.0	72.0	63.0	50.4	42.0	31.5	26.0	25.2	20.2	16.8
XR110015		5	i i	Į÷.		54	162	130	106	92.6	81.0	64.8	54.D	40.5	36.0	32.4	25.9	21.6
(100)	-	0	12	12	Н	59	177	142	118	101	88.5	70.8	59.D	443	393	35.4	28.3	23.6
		Ő.	м	M	Н	46	138	110	92.0	78.9	69.0	55.2	46.0	345	30.7	27.6	22.1	18.4
X88002	-	5	12	12	н	56	168	134	112	96.0	84.0	67.2	56.0	42.0	37.3	33.6	26.9	22.4
XR11002		5	1F	IF.		72	216	173	144	123	106	86.4	72.0	54.0	48.0	43.2	34.6	28.8
(50)		0	12	12	Н	79	237	190	158	135	119	94.8	79.0	59.3	527	47.4	37.9	31.6
	-	Ő.	M	M	Н	57	171	137	114	97.7	15.5	68.4	57.0	42.8	38.0	342	27.4	22.8
XR80025	-	5	M	12		70	210	168	140	120	105	84.0	70.0	52.5	46.7	42.0	33.6	28.0
XR110025		ŝ	F.	H.		90	270	216	180	154	135	106	90.0	67.5	60.0	54.0	43.2	36.0
(50)		0	1	12	H	99	297	238	198	170	149	119	99.0	74.3	66.0	59.4	47.5	39.6
	-	0	M	M	Н	14 68	204	163	136	195	102	81.6	68.0	51.D	45.3	40.8	32.6	45.6
X88003		5	м	м		83	249	199	166	142	125	99.6	83.0	62.3	55.3	49.8	39.8	33.2
XR11003		2	12	15	H	390	324	250	216	185	162	115	106	72.0	72.0	54.8	40.1	41.2
(50)		0	÷.	Ŀ.		18	354	283	236	202	177	142	118	88.5	78.7	70.8	56.6	47.2
	-	0		۰	Н	36	406	126	272	233	204	163	136	102 60.0	90.7	48.0	38.4	32.0
-		5	M			98	294	235	196	168	147	118	96.0	73.5	65.3	58.8	47.0	39.2
1000033		2	10		Н	36	339	271	226	194	170	136	113	04.5	75.3	67.8	54.2	45.2
isel		ō.	ĩ		H	38	414	331	276	237	207	166	138	104	92.0	82.8	66.2	55.2
	-	2			Н	59	477	382	318	273	219	191	159	119	106	95.4	76.3	616
XR8004		5	м	м		12	336	269	224	192	168	134	112	84.0	74.7	67.2	53.8	44.8
XR11004		2	I.	1.	Н	29	387	310	258	221	194	155	129	96.8	0.08	77.4	61.9	51.6
(50)		0	i M	ĩ		58	474	179	316	271	237	190	158	119	105	94.8	75.8	63.2
	-	2	1	1	н	12	546	417	364	312	273	218	112	117	121	109	17.4	72
XR8005		5	È	M.		39	417	334	278	238	209	167	139	104	92.7	83.4	66.7	55.6
XR11005		0	M	M	Н	61	483	386	322	276	242	193	161	121	107	96.6	77.3	64.4
(50)		0	i.	i iii	Н	97	591	473	394	338	296	236	197	148	131	118	94.6	78.8
	-	2	1	11	н	27	681	545	454	189	141	272	227	170	151	136	109	90.
X88006		5	È	M		68	504	403	336	288	252	202	168	126	112	101	80.6	67.2
XR11006		0	M	M	Н	94	582	466	388	333	291	233	194	146	129	116	93.1	77.6
(50)		0	i M	i m	Н	37	711	569	474	406	356	284	237	178	158	142	114	94.8
1	-	2	M	1		74	122	458	- 541	470	411	129	274	206	141	164	112	110
X88008		5	ŵ	E E		23	669	535	446	382	335	268	223	167	149	134	107	89.2
XR11008		0	5	15	H	58	774	619	516	442	387	310	258	194	172	155	124	105
(50)		6	M	i m	Н	16	948	758	632	542	432	340	316	210	211	190	152	126
1244	-		M	M		65	1095	176	730	626	546	438	365	274	243	219	175	146
		5	K	i č		79	837	670	400	478	419	335	279	209	182	167	134	112
XR8010		٥	ç	ç		23	969	775	646	554	485	388	323	242	215	194	155	129
XR110107		6	ιĉ	M		95	1083	948	722	619	542	433	361	271	263	217	173	158
	4	2	ć	M		56	1368	1094	912	782	684	547	456	342	304	274	219	182
		5	Re	100		42	1026	1006	684	586	513	410	342	257	228	205	201	137
XR80157		0	N	V.		83	1449	1159	966	828	725	580	483	362	322	290	232	193
XR110157		0	12	۶,		40 92	1620	1421	1080	926	810	710	540	405	360	324	259	216
		0	č	č		84	2052	1642	1368	1173	1026	821	684	513	456	410	328	274

Dual nozzles provide increased canopy coverage, but increase the distance the spray droplet must travel from spray tip to canopy

Which Nozzle Pattern Will Work the Best For CLS Applications?

It was stated earlier that once the spray solution leaves the nozzle, you no longer have control of the spray droplet from that point on. With this in mind, your goal should be to get the droplet from Point A (nozzle tip) to Point B (leaf surface) as quickly as possible to avoid other factors (wind, dust, etc.) having a negative impact on the spray droplet. Since the shortest distance between any two points is a straight line, a flat-fan nozzle mounted perpendicular to the sugarbeet canopy will be your best bet (as long as the droplets are medium-fine to fine in size).

Double nozzles, especially the asymmetric types, are becoming more popular with fungicide applications. While they will work for CLS, they were originally designed for diseases where an exposed vertical part of the plant is the primary spray target (i.e. spraying wheat for Head Scab). A flat-fan nozzle set up with two spray patterns (forward/back) will help you increase coverage, but will also increase the distance from nozzle tip to the sugarbeet canopy (think of it like a right triangle, you are spraying in the direction of the hypotenuse instead of the vertical leg) making the refinement of other manageable factors (spray angle, water volume, sprayer speed, etc.) critical to achieve disease control.